
Optimizing	OpenCL	Kernels	and	
Runtime	for	DNN	Inference	on	FPGAs

Seung-Hun	Chung	and	Tarek	S.	Abdelrahman
The	Edward	S.	Rogers	Dept.	of	Elec.	&	Comp.	Engineering,	University	of	Toronto

sh.chung@mail.utoronto.ca,	tsa@ece.utoronto.ca

2020-05-28 1



Overview

• Goal:	enable	fast	hardware	support	for	prototype	DNN	architectures	
by	directly	translating	a	frozen	DNN	model	into	FPGA	hardware

• Approach:	generate	OpenCL kernels	with	a	ML	compiler	(TVM)	and	
then	use	HLS	tools	(aocl)	to	generate	RTL	descriptions

• Challenge:	quality	of	generated	hardware	is	very	poor

• Opportunity:	optimize	the	generated	OpenCL	code	and	host	runtime	
to	improve	performance

2020-05-28 2



Compilation	Flow

2020-05-28 3

1.	Network	
description,	
weights

2.	Imported	to	
DL	compiler	with	

its	own	IR	

3.	Generate	and	
optimize	OpenCL

kernel	code

4.	Compile	&	
synthesize	with	
Intel	OCL	tools

5.	Program	FPGA

6.	Send	data	to/from	FPGA	with	host



Challenges

• Generated	code	from	TVM	designed	for	execution	on	GPUs
• Overly	relies	on	global	memory	with	inefficient	memory	accesses	leading	to	
poor	performance

• Granularity	in	the	transfer	of	buffers	is	kernel/layer-level

• Host	program	can	be	improved	for	increased	concurrency

2020-05-28 4



Optimizations
1. Loop	Unrolling	(Kernel):	increase	the	number	of	parallel	operations	by	

replicating	hardware

2. Channels (Kernel):	use	FIFOs	between	kernel	instances	to	conserve	global	
memory	bandwidth	and	reduce	contention

3. Autorun Kernels	(Kernel/Host):	allow	a	kernel	to	execute	independently	of	the	
host

4. Concurrent	Execution	(Host):	allow	kernels	to	execute	concurrently

5. Kernel	Reuse	(Kernel):	allow	the	reuse	of	kernels	for	similar	layers

2020-05-28 5



Loop	Unrolling	(Kernel	Optimization)

• Increase	parallelism	by	
replicating	hardware	

• Can	do	more	operations	per	
cycle	at	the	expense	of	increased	
resource	usage	(DSPs	for	MACs,	
logic/M20K	for	load-store	units)

• Unroll	factor	is	crucial

#pragma unroll M

for (int ax1 = 0; ax1 < 84; ++ax1) {

float accum = 0.0f;

#pragma unroll N

for (int k = 0; k < 120; ++k) {

accum += input0[k] * input1[ax1][k];

}

}

N controls parallelism in inner loop

M controls parallelism in outer loop

2020-05-28 6



Channels	(Kernel	Optimization)

• Reduce	global	memory	BW	traffic	by	
moving	kernel-to-kernel	data	via	
FIFOs

• Conserves	memory	bandwidth	for	
filter	weight	and	input	array	reads

channel float ch __attribute__((depth(32)));

kernel void layer1(global float *input) {

// do something with input\
for (int x = 0; x < N; x++) {
float tmp += ...
write_channel_intel(ch, tmp);

}
}

kernel void layer2(...) {
float local_memory_buf[N];
for (int x = 0; x < N; x++) {
local_memory_buf[x] = read_channel_intel(ch);

}

}

2020-05-28 7



Autorun	&	Concurrent	Execution	(Host	Opts)

• Increase	performance	by	removing	communication	overhead	
between	host	and	kernel
• Autorun:	

• Kernel	autonomously	executes
• Limitation:	can	only	be	used	with	kernels	without	arguments
• Can	use	kernel-to-kernel	channels	to	communicate	

• Concurrent	Execution
• Maintain	multiple	command	queues	so	that	multiple	kernels	may	execute	
concurrently

• Useful	for	fully-pipelined	implementations	of	CNNs

2020-05-28 8



Kernel	Reuse	(Kernel	Optimization)

• CNN	operations	are	repetitive—can	group	multiple	layers	into	single	
kernels	to	save	resources

• Freed	up	resources	can	be	put	towards	unrolling	computation

• E.g.	combine	conv2d	into	single	kernel,	FC	into	another,	pooling	to	
another,	etc.

2020-05-28 9



Evaluation

2020-05-28 10

Manual	application	of	the	optimization

Optimizations	impact	is	promising



Summary

• Optimizations	increase	parallelism,	mitigate	latency	by	reducing	
global	memory	accesses	and	reducing	OpenCL	control	overhead

• Improvements	seen	over	3	different	FPGA	platforms,	and	up	to	8.48x	
over	the	unoptimized	bitstream

• Accelerator	can	perform	up	to	4.79x	faster	than	CPU/TensorFlow

• Results	encourage	us	to	automate	these	optimizations	and	explore	
application	to	larger	networks

2020-05-28 11


