
SALSA
A Domain Specific Architecture for 

Sequence Alignment

Lorenzo Di Tucci
Riyadh Baghdadi 
Saman Amarasinghe
Marco D. Santambrogio

27th IEEE Reconfigurable Architecture Workshop
May 18th, 2020

New Orleans, Lousiana USA

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) & Computer Science and Artificial Intelligence Laaboratory (CSAIL)
Politecnico di Milano - MIT

lorenzo.ditucci@polimi.it - lditucci@csail.mit.edu
baghdadi@csail.mit.edu
saman@csail.mit.edu
marco.santambrogio@polimi.it

http://polimi.it
http://csail.mit.edu
http://csail.mit.edu
http://csail.mit.edu
http://polimi.it


Context

2

• The explosion of genomic data is fostering research in fields such as 
personalized medicine and agritech[1]

• Moore’s Law and Dennard Scaling are ending, and there is the
necessity to provide more performant, power-efficient and easy to use 
architectures [2]

• GPUs and FPGAs delivers major performance improvements on 
specific applications, however, GPUs present notable power 
consumption, while FPGA lacks programmability

[1] G. S. Ginsburg and J. J. McCarthy, “Personalized medicine: revolu- tionizing drug discovery and patient care,” TRENDS in Biotechnology, vol. 19, no. 12, pp. 491–496, 2001. 
[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier, 2017 



Contributions

3

The design and evaluation of SALSA, a Domain Specific Architecture 
(DSA) for sequence alignment that is:

• Highly Programmable: thanks to RISC-V ISA[1], with the possibility to 
extend the Instruction Set by introducing custom instructions;

• Customizable: it is possible to tune different parameters in the source 
code to generate architecture with different features like the number of
processing elements, or the size of the memory port;

• Extensible: each Processing Element is composed of a general
purpose ALU programmable via software, and more specific ALUs. 
The user can design and integrate custom ALUs inside SALSA, 
exploiting the overall architecture

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizˇienis, J. Wawrzynek, and K. Asanovic ,́ “Chisel: constructing hardware in a scala embedded language,” in DAC Design Automation Conference 2012. IEEE, 2012, pp. 1212–1221. 



SALSA
Top Level Architecture

4

Fetch&Decode Dispatch Load/Store

PE Dispatcher

PE 
SubDispatcher

PE 
SubDispatcher

PE 
SubDispatcher

PE 
SubDispatcher

PE 
SubDispatcher

PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE

PE 
SubCollector

PE 
SubCollector

PE 
SubCollector

PE 
SubCollector

PE 
SubCollector

PE Collector

Selector

F
I
F
O

Global Registers

To Load/Store Unit

Compute

... ... ... ... ...

... ... ... ... ...

• Optimized datapath for handling reduced-
bitwidth variables

• Compute step composed of a systolic array of 
processing elements to handle wavefront
computations

• Detached Compute-Load/Store units with a 
stalling mechanism to handle memory 
transactions

• Hierarchical PE Dispatchers to avoid routing
congestions

• Possibility to send data to all Pes as well as to 
single Pes thanks to dispatchers and global 
registers



Processing Element

5

Private Registers

Shared Input Data

Shared Output
Registers

ALUs Block

Processing Element

• PEs communications thanks to shared input/output registers

• The ALUs block contains General Purpose ALUs and Specific Purpose ALUs to perform 
multiple operations within the single clock cycle

• Possibility to design and integrated Specific Purpose ALU to benefit from the overall 
infrastructure



RISC-V ISA Extension

6

funct7 rs2 rs1 xd xs1 xs2 rd opcode

31 25 24 20 19 15 14 13 12 11 7 6 0

7 5 5 5 71 1 1

Registers for the RISC-V ISA extension by ROCC has been re-purposed to introduce new 
instructions such as loading multiple variables from memory with a single instruction, load 
multiple reduced-bitwidth variables in a 64 bits one or handling the specific purpose ALUs 
available or designed by the user.



Experimental Settings

7

• SALSA has been designed using Chisel HDL, integrated in Rocket using the ROCC 
Interface[1], with direct access to Rocket Cache (64bits wide) and implemented on a 
Xilinx Virtex Ultrascale+ FPGA.

• SALSA architectural parameters: 160 Processing Elements, 16 32-bits global registers, 5
sub-dispatchers and 5 sub-collectors. Each PE features 20 32-bits private registers, 6 
32-bits shared output registers

• The design and implementation of SALSA have been done with Firesim 1.5[2], testing on 
a single AWS EC2 F1 instance at a target frequency of 200 MHz

• Performance test performed on 4 applications: Smith-Waterman with constant and 
affine-gap penalty, Needleman Wunsch and MaxScore

• The application has been tested on Rocket (1GHz and 3GHz), SALSA (200Mhz) and on 
an Intel Xeon E3 (3.7GHz) running SeqAn[3] as a software baseline.

• Performance benchmarked by means of Giga Cell Update per Second (GCUPS)

[1] C. Schmidt, “RISC-V Rocket-Chip Tutorial,” https://riscv.org/wp- content/uploads/2015/01/riscv-rocket-chip-tutorial-bootcamp- jan2015.pdf, 2015, 
[2] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the public cloud,” in Proceedings of the 45th Annual International Symposium 
on Computer Architecture. IEEE Press, 2018, pp. 29–42. 
[3] A. Do r̈ing, D. Weese, T. Rausch, and K. Reinert, “Seqan an efficient, generic c++ library for sequence analysis,” BMC bioinformatics, vol. 9, no. 1, p. 11, 2008. 



Results

8

• Execution Times includes data movement

• SALSA is faster than Rocket & SeqAn on the Intel Xeon in all the applications benchmarked, 
with performance improvement up to more than 300 times

• When exploiting 40 threads on the Intel Xeon E3, SeqAn obtains 2GCUPS, while SALSA’s 
best performance (MaxScore example) obtain 8GCUPS



Results

9

Performance Efficiency comparison by means of GCUPS/W

SALSA is always more power efficient than the Intel processor, with improvements up to 790 
times (MaxScore example)



Conclusions

10

For questions regarding this work, email:
Lorenzo Di Tucci: lorenzo.ditucci@polimi.it – lditucci@csail-mit.edu

This paper presents SALSA a DSA for Sequence Alignment

• Good tradeoff of performance, power consumption and programmability

• Chisel HDL and RISC-V ISA make it highly programmable, parametrizable, customizable and 
extensible

• Possibility to modify the ALU to specialize the computation exploiting the overall architecture

• Performance comparison showed 790x power efficiency improvement and 60x performance 
improvement

• As SALSA’s architecture is based on Systolic Arrays (SAs), future works will involve the exploration of its 
usage in other contexts such as Convolutional Neural Networks and the introduction of a bi-dimensional 
SA.

http://polimi.it
http://csail-mit.edu

