

SALSA A Domain Specific Architecture for Sequence Alignment

27th IEEE Reconfigurable Architecture Workshop May 18th, 2020 New Orleans, Lousiana USA

Lorenzo Di Tucci Riyadh Baghdadi Saman Amarasinghe Marco D. Santambrogio lorenzo.ditucci@polimi.it - lditucci@csail.mit.edu baghdadi@csail.mit.edu saman@csail.mit.edu marco.santambrogio@polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) & Computer Science and Artificial Intelligence Laaboratory (CSAIL) Politecnico di Milano - MIT

Context

- The explosion of genomic data is fostering research in fields such as personalized medicine and agritech^[1]
- Moore's Law and Dennard Scaling are ending, and there is the necessity to provide more performant, power-efficient and easy to use architectures ^[2]
- GPUs and FPGAs delivers major performance improvements on specific applications, however, GPUs present notable power consumption, while FPGA lacks programmability

[1] G. S. Ginsburg and J. J. McCarthy, "Personalized medicine: revolu- tionizing drug discovery and patient care," *TRENDS in Biotechnology*, vol. 19, no. 12, pp. 491–496, 2001. [2] J. L. Hennessy and D. A. Patterson, *Computer architecture: a quantitative approach*. Elsevier, 2017

Contributions

The design and evaluation of SALSA, a Domain Specific Architecture (DSA) for sequence alignment that is:

- Highly Programmable: thanks to RISC-V ISA^[1], with the possibility to extend the Instruction Set by introducing custom instructions;
- Customizable: it is possible to tune different parameters in the source code to generate architecture with different features like the number of processing elements, or the size of the memory port;
- Extensible: each Processing Element is composed of a general purpose ALU programmable via software, and more specific ALUs. The user can design and integrate custom ALUs inside SALSA, exploiting the overall architecture

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviz ienis, J. Wawrzynek, and K. Asanovic, "Chisel: constructing hardware in a scala embedded language," in DAC Design Automation Conference 2012. IEEE, 2012, pp. 1212–1221.

SALSA Top Level Architecture

- Optimized datapath for handling reducedbitwidth variables
- Compute step composed of a systolic array of processing elements to handle wavefront computations
- Detached Compute-Load/Store units with a stalling mechanism to handle memory transactions
- Hierarchical PE Dispatchers to avoid routing congestions
- Possibility to send data to all Pes as well as to single Pes thanks to dispatchers and global registers

Processing Element

- PEs communications thanks to shared input/output registers
- The ALUs block contains General Purpose ALUs and Specific Purpose ALUs to perform multiple operations within the single clock cycle
- Possibility to design and integrated Specific Purpose ALU to benefit from the overall infrastructure

RISC-V ISA Extension

Registers for the RISC-V ISA extension by ROCC has been re-purposed to introduce new instructions such as loading multiple variables from memory with a single instruction, load multiple reduced-bitwidth variables in a 64 bits one or handling the specific purpose ALUs available or designed by the user.

Experimental Settings

- SALSA has been designed using Chisel HDL, integrated in Rocket using the ROCC Interface^[1], with direct access to Rocket Cache (64bits wide) and implemented on a Xilinx Virtex Ultrascale+ FPGA.
- SALSA architectural parameters: 160 Processing Elements, 16 32-bits global registers, 5 sub-dispatchers and 5 sub-collectors. Each PE features 20 32-bits private registers, 6 32-bits shared output registers
- The design and implementation of SALSA have been done with Firesim 1.5^[2], testing on a single AWS EC2 F1 instance at a target frequency of 200 MHz
- Performance test performed on 4 applications: Smith-Waterman with constant and affine-gap penalty, Needleman Wunsch and MaxScore
- The application has been tested on Rocket (1GHz and 3GHz), SALSA (200Mhz) and on an Intel Xeon E3 (3.7GHz) running SeqAn^[3] as a software baseline.
- Performance benchmarked by means of Giga Cell Update per Second (GCUPS)

[3] A. Do ring, D. Weese, T. Rausch, and K. Reinert, "Seqan an efficient, generic c++ library for sequence analysis," BMC bioinformatics, vol. 9, no. 1, p. 11, 2008.

^[1] C. Schmidt, "RISC-V Rocket-Chip Tutorial," https://riscv.org/wp- content/uploads/2015/01/riscv-rocket-chip-tutorial-bootcamp- jan2015.pdf, 2015,

^[2] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., "Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the public cloud," in *Proceedings of the 45th Annual International Symposium on Computer Architecture*. IEEE Press, 2018, pp. 29–42.

Results

Algorithm	Dataset	SALSA exec. time	Salsa Performance Improvement		
		@ 200Mhz [μs]	w.r.t. Rocket @ 1 GHz	w.r.t. Rocket @ 3 GHz	w.r.t. CPU @ 3.7 GHz
MaxScore	32x64	0.8	101.66x	33.89x	47.64x
MaxScore	64x128	1.045	350.07x	116.69x	96.74x
SmithWaterman	32x64	16.84	4.99x	1.66x	2.38x
SmithWaterman	64x128	37.01	9.86x	3.28x	3.31x
NeedlemanWunsch	32x64	16.71	4.85x	1.62x	1.99x
NeedlemanWunsch	64x128	37.00	9.56x	3.19x	2.76x
SmithWatermanAffine	32x64	17.8	8.62x	2.87x	2.55x
SmithWatermanAffine	64x128	39.48	17.45x	5.82x	4.04x

- Execution Times includes data movement
- SALSA is faster than Rocket & SeqAn on the Intel Xeon in all the applications benchmarked, with performance improvement up to more than 300 times
- When exploiting 40 threads on the Intel Xeon E3, SeqAn obtains 2GCUPS, while SALSA's best performance (MaxScore example) obtain 8GCUPS

Results

Algorithm	Dataset	Power E SALSA	fficiency CPU	[GCUPS/W] Improvement
MaxScore	32x64	231.28	0.59	389.8x
MaxScore	64x128	712.66	0.9	791.5x
SmithWaterman	32x64	11.06	0.56	19.5x
SmithWaterman	64x128	20.12	0.74	27.13x
NeedlemanWunsch	32x64	11.14	0.68	16.34x
NeedlemanWunsch	64x128	20.13	0.89	22.61x
SmithWatermanAffine	32x64	10.45	0.5	20.93x
SmithWatermanAffine	64x128	18.86	0.57	33.09x

Performance Efficiency comparison by means of GCUPS/W

SALSA is always more power efficient than the Intel processor, with improvements up to **790 times** (MaxScore example)

Conclusions

This paper presents SALSA a DSA for Sequence Alignment

- Good tradeoff of performance, power consumption and programmability
- Chisel HDL and RISC-V ISA make it highly programmable, parametrizable, customizable and extensible
- Possibility to modify the ALU to specialize the computation exploiting the overall architecture
- Performance comparison showed 790x power efficiency improvement and 60x performance improvement
- As SALSA's architecture is based on Systolic Arrays (SAs), future works will involve the exploration of its usage in other contexts such as Convolutional Neural Networks and the introduction of a bi-dimensional SA.

For questions regarding this work, email: Lorenzo Di Tucci: lorenzo.ditucci@polimi.it – lditucci@csail-mit.edu

