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Context
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• The explosion of genomic data is fostering research in fields such as 
personalized medicine and agritech[1]

• Moore’s Law and Dennard Scaling are ending, and there is the
necessity to provide more performant, power-efficient and easy to use 
architectures [2]

• GPUs and FPGAs delivers major performance improvements on 
specific applications, however, GPUs present notable power 
consumption, while FPGA lacks programmability

[1] G. S. Ginsburg and J. J. McCarthy, “Personalized medicine: revolu- tionizing drug discovery and patient care,” TRENDS in Biotechnology, vol. 19, no. 12, pp. 491–496, 2001. 
[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier, 2017 



Contributions
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The design and evaluation of SALSA, a Domain Specific Architecture 
(DSA) for sequence alignment that is:

• Highly Programmable: thanks to RISC-V ISA[1], with the possibility to 
extend the Instruction Set by introducing custom instructions;

• Customizable: it is possible to tune different parameters in the source 
code to generate architecture with different features like the number of
processing elements, or the size of the memory port;

• Extensible: each Processing Element is composed of a general
purpose ALU programmable via software, and more specific ALUs. 
The user can design and integrate custom ALUs inside SALSA, 
exploiting the overall architecture

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizˇienis, J. Wawrzynek, and K. Asanovic ,́ “Chisel: constructing hardware in a scala embedded language,” in DAC Design Automation Conference 2012. IEEE, 2012, pp. 1212–1221. 



SALSA
Top Level Architecture
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• Optimized datapath for handling reduced-
bitwidth variables

• Compute step composed of a systolic array of 
processing elements to handle wavefront
computations

• Detached Compute-Load/Store units with a 
stalling mechanism to handle memory 
transactions

• Hierarchical PE Dispatchers to avoid routing
congestions

• Possibility to send data to all Pes as well as to 
single Pes thanks to dispatchers and global 
registers



Processing Element
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• PEs communications thanks to shared input/output registers

• The ALUs block contains General Purpose ALUs and Specific Purpose ALUs to perform 
multiple operations within the single clock cycle

• Possibility to design and integrated Specific Purpose ALU to benefit from the overall 
infrastructure



RISC-V ISA Extension
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funct7 rs2 rs1 xd xs1 xs2 rd opcode

31 25 24 20 19 15 14 13 12 11 7 6 0

7 5 5 5 71 1 1

Registers for the RISC-V ISA extension by ROCC has been re-purposed to introduce new 
instructions such as loading multiple variables from memory with a single instruction, load 
multiple reduced-bitwidth variables in a 64 bits one or handling the specific purpose ALUs 
available or designed by the user.



Experimental Settings
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• SALSA has been designed using Chisel HDL, integrated in Rocket using the ROCC 
Interface[1], with direct access to Rocket Cache (64bits wide) and implemented on a 
Xilinx Virtex Ultrascale+ FPGA.

• SALSA architectural parameters: 160 Processing Elements, 16 32-bits global registers, 5
sub-dispatchers and 5 sub-collectors. Each PE features 20 32-bits private registers, 6 
32-bits shared output registers

• The design and implementation of SALSA have been done with Firesim 1.5[2], testing on 
a single AWS EC2 F1 instance at a target frequency of 200 MHz

• Performance test performed on 4 applications: Smith-Waterman with constant and 
affine-gap penalty, Needleman Wunsch and MaxScore

• The application has been tested on Rocket (1GHz and 3GHz), SALSA (200Mhz) and on 
an Intel Xeon E3 (3.7GHz) running SeqAn[3] as a software baseline.

• Performance benchmarked by means of Giga Cell Update per Second (GCUPS)

[1] C. Schmidt, “RISC-V Rocket-Chip Tutorial,” https://riscv.org/wp- content/uploads/2015/01/riscv-rocket-chip-tutorial-bootcamp- jan2015.pdf, 2015, 
[2] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the public cloud,” in Proceedings of the 45th Annual International Symposium 
on Computer Architecture. IEEE Press, 2018, pp. 29–42. 
[3] A. Do r̈ing, D. Weese, T. Rausch, and K. Reinert, “Seqan an efficient, generic c++ library for sequence analysis,” BMC bioinformatics, vol. 9, no. 1, p. 11, 2008. 



Results
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• Execution Times includes data movement

• SALSA is faster than Rocket & SeqAn on the Intel Xeon in all the applications benchmarked, 
with performance improvement up to more than 300 times

• When exploiting 40 threads on the Intel Xeon E3, SeqAn obtains 2GCUPS, while SALSA’s 
best performance (MaxScore example) obtain 8GCUPS



Results
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Performance Efficiency comparison by means of GCUPS/W

SALSA is always more power efficient than the Intel processor, with improvements up to 790 
times (MaxScore example)



Conclusions
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For questions regarding this work, email:
Lorenzo Di Tucci: lorenzo.ditucci@polimi.it – lditucci@csail-mit.edu

This paper presents SALSA a DSA for Sequence Alignment

• Good tradeoff of performance, power consumption and programmability

• Chisel HDL and RISC-V ISA make it highly programmable, parametrizable, customizable and 
extensible

• Possibility to modify the ALU to specialize the computation exploiting the overall architecture

• Performance comparison showed 790x power efficiency improvement and 60x performance 
improvement

• As SALSA’s architecture is based on Systolic Arrays (SAs), future works will involve the exploration of its 
usage in other contexts such as Convolutional Neural Networks and the introduction of a bi-dimensional 
SA.

http://polimi.it
http://csail-mit.edu

