iy,

\N\ s
ﬁ(;%‘g‘c;a POLITECNICO
LY MILANO 1863

&

SALSA

A Domain Specific Architecture for
Sequence Alignment

271 [EEE Reconfigurable Architecture Workshop
May 18th, 2020

New Orleans, Lousiana USA

Lorenzo Di Tucci lorenzo.ditucci@polimi.it - Iditucci@csail.mit.edu
Riyadh Baghdadi baghdadi@csail.mit.edu
Saman Amarasinghe saman@csail.mit.edu

Marco D. Santambrogio = marco.santambrogio@polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) & Computer Science and Atrtificial Intelligence Laaboratory (CSAIL)
Politecnico di Milano - MIT

IIIIIIIIIIIIIIIIIIIII

neCsST i

laboratory

http://polimi.it
http://csail.mit.edu
http://csail.mit.edu
http://csail.mit.edu
http://polimi.it

Context

® The explosion of genomic data is fostering research in fields such as
personalized medicine and agritech!'!

® Moore’s Law and Dennard Scaling are ending, and there is the
necessity to provide more performant, power-efficient and easy to use
architectures [

® GPUs and FPGAs delivers major performance improvements on
specific applications, however, GPUs present notable power
consumption, while FPGA lacks programmability

[1] G. S. Ginsburg and J. J. McCarthy, “Personalized medicine: revolu- tionizing drug discovery and patient care,” TRENDS in Biotechnology, vol. 19, no. 12, pp. 491-496, 2001.
[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier, 2017

POLITECNICO MILANO 1863 I I I
N E laboratory

Contributions

The design and evaluation of SALSA, a Domain Specific Architecture
(DSA) for sequence alignment that is:

® Highly Programmable: thanks to RISC-V ISAl, with the possibility to
extend the Instruction Set by introducing custom instructions;

® Customizable: it is possible to tune different parameters in the source
code to generate architecture with different features like the number of
processing elements, or the size of the memory port;

® Extensible: each Processing Element is composed of a general
purpose ALU programmable via software, and more specific ALUs.
The user can design and integrate custom ALUs inside SALSA,
exploiting the overall architecture

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviz'ienis, J. Wawrzynek, and K. Asanovic’, “Chisel: constructing hardware in a scala embedded language,” in DAC Design Automation Conference 2012. |EEE, 2012, pp. 1212-1221.

OOOOOOOOOOOOOOOOOOOOO III

Iaborator\/

SALSA
op Level Architecture

p
[Fetch&Decode]—{ Dispatch]‘ Load/Store]
\.

v

Compute
Global Registers { PE DlSpatCher]

l

F
|
F
PE
ol [

ubDispatche

PE PE PE PE
r| |SubDispatcher| |SubDispatcher| |SubDispatcher| |SubDispatcher

(M~

PE

[SubColIeotor

PE PE PE PE
SubCollector SubCollector SubCollector SubCollector

\

[PE Collector]

v

/

POLITECNICO MILANO 1863

N E Iaborator\/

To Load/Store Unit

Optimized datapath for handling reduced-
bitwidth variables

Compute step composed of a systolic array of
processing elements to handle wavefront
computations

Detached Compute-Load/Store units with a
stalling mechanism to handle memory
transactions

Hierarchical PE Dispatchers to avoid routing
congestions

Possibility to send data to all Pes as well as to
single Pes thanks to dispatchers and global
registers

Processing Element

Processing Element \
Private Registers

4 I
ALUs Block
- /
Shared Output
Registers
Shared Input Data
N o

® PEs communications thanks to shared input/output registers

® The ALUs block contains General Purpose ALUs and Specific Purpose ALUs to perform
multiple operations within the single clock cycle

® Possibility to design and integrated Specific Purpose ALU to benefit from the overall
infrastructure

OOOOOOOOOOOOOOOOOOOOO III

Iaborator\/

RISC-V ISA Extension

31 25 24 20 19 15 14 13 12 11 7 6 0
funct7 rs2 rsi xd | xs1 | xs2 rd opcode
7 5 5 1 1 1 5 7

Registers for the RISC-V ISA extension by ROCC has been re-purposed to introduce new
instructions such as loading multiple variables from memory with a single instruction, load
multiple reduced-bitwidth variables in a 64 bits one or handling the specific purpose ALUs
available or designed by the user.

OOOOOOOOOOOOOOOOOOOOO III

Iaborator\/

Experimental Settings

® SALSA has been designed using Chisel HDL, integrated in Rocket using the ROCC
Interfacel'l, with direct access to Rocket Cache (64bits wide) and implemented on a
Xilinx Virtex Ultrascale+ FPGA.

® SALSA architectural parameters: 160 Processing Elements, 16 32-bits global reqgisters, 5
sub-dispatchers and 5 sub-collectors. Each PE features 20 32-bits private registers, 6
32-bits shared output registers

®* The design and implementation of SALSA have been done with Firesim 1.5[?1, testing on
a single AWS EC2 F1 instance at a target frequency of 200 MHz

®* Performance test performed on 4 applications: Smith-Waterman with constant and
affine-gap penalty, Needleman Wunsch and MaxScore

®* The application has been tested on Rocket (1GHz and 3GHz), SALSA (200Mhz) and on
an Intel Xeon E3 (3.7GHz) running SegAnB! as a software baseline.

®* Performance benchmarked by means of Giga Cell Update per Second (GCUPS)

[1] C. Schmidt, “RISC-V Rocket-Chip Tuto t ial,” https://riscv.org/wp- content/uploads/2015/01/riscv-rocket-chip-tutorial-bootca amp- jan 2015 pdf 2015,

[2] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D Lee, N. P mberton, E. Amaro, C. S hm dt, A. Chopra t al., “Firesim: Fpga- rated cycle-exact scale-out system simulation in the public cloud,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture. |IEEE Press 2018 pp. 29-42.

[3]1A. Do'ring, D. Weese, T. Rausch, and K. Reinert, “Seqan an efficient, gen + library for seque nalysis,” BMC bioinformatics, vol. 9, no. 1, p. 11, 2008.

POLITECNICO MILANO 1863 I I I
N E laboratory

Results

Algorithm Dataset SALSA exec. time Salsa Performance Improvement
@ 200Mhz [ps] w.rt. Rocket @ 1 GHz w.r.t. Rocket @ 3 GHz w.rt. CPU @ 3.7 GHz
MaxScore 32x64 0.8 101.66x 33.89x 47.64x
MaxScore 64x128 1.045 350.07x 116.69x 96.74x
SmithWaterman 32x64 16.84 4.99x 1.66x 2.38x
SmithWaterman 64x128 37.01 9.86x 3.28x 3.31x
NeedlemanWunsch 32x64 16.71 4.85x 1.62x 1.99x
NeedlemanWunsch 64x128 37.00 9.56x 3.19x 2.76x
SmithWatermanAffine 32x64 17.8 8.62x 2.87x 2.55x
SmithWatermanAffine 64x128 39.48 17.45x 5.82x 4.04x

® Execution Times includes data movement

® SALSA s faster than Rocket & SegAn on the Intel Xeon in all the applications benchmarked,
with performance improvement up to more than 300 times

®* When exploiting 40 threads on the Intel Xeon E3, SegAn obtains 2GCUPS, while SALSA's
best performance (MaxScore example) obtain 8SGCUPS

POLITECNICO MILANO 1863 I I I
N E laboratory

Results

Power Efficiency [GCUPS/W1]

Algorithm R SALSA CPU Improvement
MaxScore 32x64 231.28 0.59 389.8x
MaxScore 64x128 712.66 0.9 791.5x
SmithWaterman 32x64 11.06 0.56 19.5x
SmithWaterman 64x128 20.12 0.74 27.13x
NeedlemanWunsch 32x64 11.14 0.68 16.34x
NeedlemanWunsch 64x128 20.13 0.89 22.61x
SmithWatermanAffine 32x64 10.45 0.5 20.93x
SmithWatermanAffine 64x128 18.86 0.57 33.09x

Performance Efficiency comparison by means of GCUPS/W

SALSA is always more power efficient than the Intel processor, with improvements up to 790
times (MaxScore example)

POLITECNICO MILANO 1863 I I I
N E laboratory

Conclusions
This paper presents SALSA a DSA for Sequence Alignment

® Good tradeoff of performance, power consumption and programmability

® Chisel HDL and RISC-V ISA make it highly programmable, parametrizable, customizable and
extensible

® Possibility to modify the ALU to specialize the computation exploiting the overall architecture

® Performance comparison showed 790x power efficiency improvement and 60x performance
improvement

® As SALSA'’s architecture is based on Systolic Arrays (SAs), future works will involve the exploration of its

usage in other contexts such as Convolutional Neural Networks and the introduction of a bi-dimensional
SA.

For questions regarding this work, email:
Lorenzo Di Tucci: lorenzo.ditucci@polimi.it — Iditucci@csail-mit.edu

POLITECNICO MILANO 1863 I I I
N E laboratory

http://polimi.it
http://csail-mit.edu

