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Motivation

● There is a need for an open source and easy to use ecosystem in 
neuromorphic hardware research

● In this work, we present such an environment

○ A highly flexible environment that enables rapid experimentation with 
neuromorphic architectures in both software via C++ simulation and 
hardware via FPGA emulation

○ This enables hardware architects and application engineers to 
investigate and tune parameters of their neuromorphic architecture 
that would otherwise be unavailable on a purely prefabricated ASIC.



Reference Architecture

● MxN grid of cores with each core consisting of

○ Neuron block: implements fundamental leaky-integrate-
and-fire (LIF) neuron model

○ CSRAM: stores configuration parameters for the neuron 
block and router

○ Token controller: Coordinates data movement and 
computation between the CSRAM and neuron block. 
Additionally, receives incoming spikes from the 
scheduler

○ Router: routes outgoing spikes to their destination cores

○ Scheduler: schedules received spikes for processing by 
this core’s neuron block



Reference Architecture
● Able to recreate a majority of the 

features of IBM’s TrueNorth 
platform through parameter 
choices

● Verified functional equivalence 
through a number of case studies 
using MNIST and Vector Matrix 
Multiplication experiments

TrueNorth This Work

Global Tick Rate 1 kHz 1 kHz

Axon-Dendrite Crossbar 256 x 256 Parameterized

Weights per Neuron 4 Parameterized

Neuron Potential 9 bit signed Parameterized

Reset Potential 9 bit signed Parameterized

Weight Value 9 bit signed Parameterized

Leak Value 9 bit signed Parameterized

Pos./Neg. Threshold 18/18 bit signed Parameterized

LIF Neuron Model YES YES

Linear Reset YES YES

Stochastic Behaviors YES NO



Hardware 
Implementation 
Results
● Network Size: number of 

neuromorphic cores present 
in the design

● Resource utilization results 
collected from Xilinx Zynq 
Ultrascale+ MPSoC 
ZCU102 development board

● Limited by LUT exhaustion

Network Size LUT
(%)

LUT-RAM
(%)

FF
(%)

BRAM
(%)

Delay 
(ns)

1x1 8.40 0.31 3.15 0.60 9.143

2x2 9.99 0.73 3.68 1.81 7.975

3x3 14.03 1.79 5.05 4.82 9.727

4x4 19.75 3.27 7.01 9.05 8.480

5x5 27.15 5.17 9.55 14.47 9.360

6x6 36.24 7.49 12.68 21.11 9.397

7x7 47.01 10.23 16.40 28.95 10.907

8x8 59.47 13.40 20.70 37.99 9.015

9x9 73.62 16.99 25.59 48.25 9.498

10x10 89.45 21.00 31.07 59.70 8.305

10x11 97.78 23.11 33.95 65.73 9.926



Streaming Framework

● “Bare metal” C application utilizing two 
threads

○ “TX” thread that reads input from SD card and 
sends data into the network via DMA transfer

○ “RX” thread that receives and writes output to 
the SD card

● Supports deploying neural networks that have 
been trained with the “constrain-then-train” 
methodology from Esser et al. [1].



Verification Approaches
● Using the streaming framework, verified with a 

mixture of traditional (MNIST) and non-traditional 
(VMM) neural network applications

● MNIST: Validated against 5 core network 
presented by Yepes et al. [2]

● VMM: Validated 100 random VMM executions 
from 2x3 to 8x8 against IBM’s Compass [3] 
environment

● Both matched with TrueNorth across both 
experiments, giving evidence towards functional 
equivalence



Neuron Modifications for Efficient VMM Mapping

Design LUT LUT-RAM FF BRAM Delay (ns)

Reference 1700 192 1210 4 10.266

Proposed 1165 48 1056 2 8.026

Reduction (%) 31.5 75.0 12.7 50.0 21.8

● Traditional signed (pos./neg.) VMM on TrueNorth requires a large 
amount of resource duplication due to architectural limitations [4]

○ Negative threshold uses a “<” comparison while the positive uses “≥”

● Architectural reconfigurability allows for correcting this asymmetry

○ Yields a massive savings in neurons required and consequently FPGA 
resources while maintaining VMM functionality



Conclusion

● We are looking forward to exploring opportunities available in this environment for 
architectural optimizations

● Future work:
○ CNN execution and optimizations
○ On-chip learning
○ Multicast routing

● Website + GitHub + Contact information: https://ua-rcl.github.io/RANC

https://ua-rcl.github.io/RANC
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