
FPGA Based Emulation Environment for
Neuromorphic Architectures

Spencer Valancius*, Edward Richter*, Ruben Purdy*, Kris Rockowitz*, Michael
Inouye*, Joshua Mack*, Nirmal Kumbhare*, Kaitlin Fair†, John Mixter‡, Ali Akoglu*

*Department of Electrical and Computer Engineering, University of Arizona
{svalancius12, edwardrichter, rubenpurdy, rockowitzks, mikesinouye, jmack2545, nirmalk, akoglu}@arizona.edu

†Air Force Research Labs
kaitlin.fair@us.af.mil

‡: Raytheon Missile Systems
John_E_Mixter@raytheon.com

Motivation

● There is a need for an open source and easy to use ecosystem in
neuromorphic hardware research

● In this work, we present such an environment

○ A highly flexible environment that enables rapid experimentation with
neuromorphic architectures in both software via C++ simulation and
hardware via FPGA emulation

○ This enables hardware architects and application engineers to
investigate and tune parameters of their neuromorphic architecture
that would otherwise be unavailable on a purely prefabricated ASIC.

Reference Architecture

● MxN grid of cores with each core consisting of

○ Neuron block: implements fundamental leaky-integrate-
and-fire (LIF) neuron model

○ CSRAM: stores configuration parameters for the neuron
block and router

○ Token controller: Coordinates data movement and
computation between the CSRAM and neuron block.
Additionally, receives incoming spikes from the
scheduler

○ Router: routes outgoing spikes to their destination cores

○ Scheduler: schedules received spikes for processing by
this core’s neuron block

Reference Architecture
● Able to recreate a majority of the

features of IBM’s TrueNorth
platform through parameter
choices

● Verified functional equivalence
through a number of case studies
using MNIST and Vector Matrix
Multiplication experiments

TrueNorth This Work

Global Tick Rate 1 kHz 1 kHz

Axon-Dendrite Crossbar 256 x 256 Parameterized

Weights per Neuron 4 Parameterized

Neuron Potential 9 bit signed Parameterized

Reset Potential 9 bit signed Parameterized

Weight Value 9 bit signed Parameterized

Leak Value 9 bit signed Parameterized

Pos./Neg. Threshold 18/18 bit signed Parameterized

LIF Neuron Model YES YES

Linear Reset YES YES

Stochastic Behaviors YES NO

Hardware
Implementation
Results
● Network Size: number of

neuromorphic cores present
in the design

● Resource utilization results
collected from Xilinx Zynq
Ultrascale+ MPSoC
ZCU102 development board

● Limited by LUT exhaustion

Network Size LUT
(%)

LUT-RAM
(%)

FF
(%)

BRAM
(%)

Delay
(ns)

1x1 8.40 0.31 3.15 0.60 9.143

2x2 9.99 0.73 3.68 1.81 7.975

3x3 14.03 1.79 5.05 4.82 9.727

4x4 19.75 3.27 7.01 9.05 8.480

5x5 27.15 5.17 9.55 14.47 9.360

6x6 36.24 7.49 12.68 21.11 9.397

7x7 47.01 10.23 16.40 28.95 10.907

8x8 59.47 13.40 20.70 37.99 9.015

9x9 73.62 16.99 25.59 48.25 9.498

10x10 89.45 21.00 31.07 59.70 8.305

10x11 97.78 23.11 33.95 65.73 9.926

Streaming Framework

● “Bare metal” C application utilizing two
threads

○ “TX” thread that reads input from SD card and
sends data into the network via DMA transfer

○ “RX” thread that receives and writes output to
the SD card

● Supports deploying neural networks that have
been trained with the “constrain-then-train”
methodology from Esser et al. [1].

Verification Approaches
● Using the streaming framework, verified with a

mixture of traditional (MNIST) and non-traditional
(VMM) neural network applications

● MNIST: Validated against 5 core network
presented by Yepes et al. [2]

● VMM: Validated 100 random VMM executions
from 2x3 to 8x8 against IBM’s Compass [3]
environment

● Both matched with TrueNorth across both
experiments, giving evidence towards functional
equivalence

Neuron Modifications for Efficient VMM Mapping

Design LUT LUT-RAM FF BRAM Delay (ns)

Reference 1700 192 1210 4 10.266

Proposed 1165 48 1056 2 8.026

Reduction (%) 31.5 75.0 12.7 50.0 21.8

● Traditional signed (pos./neg.) VMM on TrueNorth requires a large
amount of resource duplication due to architectural limitations [4]

○ Negative threshold uses a “<” comparison while the positive uses “≥”

● Architectural reconfigurability allows for correcting this asymmetry

○ Yields a massive savings in neurons required and consequently FPGA
resources while maintaining VMM functionality

Conclusion

● We are looking forward to exploring opportunities available in this environment for
architectural optimizations

● Future work:
○ CNN execution and optimizations
○ On-chip learning
○ Multicast routing

● Website + GitHub + Contact information: https://ua-rcl.github.io/RANC

https://ua-rcl.github.io/RANC

References
[1] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di
Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha. Convolutional networks for fast, energy-efficient neuromorphic computing.
Proceedings of the National Academy of Sciences, 113(41):11441–11446, 2016.

[2] A. Jimeno-Yepes, J. Tang, and B. S. Mashford. Improving classification accuracy of feedforward neural networks for spiking neuromorphic chips.
In 2017 International Joint Conference on Artificial Intelligence (IJCAI), 2017.

[3] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P. Risk, H. D. Simon, and D. S. Modha. Compass: A scalable simulator for
an architecture for cognitive computing. In 2012 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages
1–11, 2012.

[4] K. L. Fair, D. R. Mendat, A. G. Andreou, C. J. Rozell, J. Romberg, and D. V. Anderson. Sparse coding using the locally competitive algorithm on
the TrueNorth neurosynaptic system. Frontiers in Neuroscience, 13:754, 2019.

