
Graduate School of Information, Production and Systems, Waseda University

An Interval-based Mapping Algorithm for Multi-shape
Tasks on Heterogeneous Reconfigurable FPGAs

Authors: Tingyu Zhou*, Tieyuan Pan, Michael Meyer, Yiping Dong, and Takahiro Watanabe
*Email: shu-yu@asagi.waseda.jp

Graduate School of Information, Production and Systems, Waseda University

Outline
1. Introduction

2. Related Work

3. Problem Formulation

4. Interval-based Mapping Algorithm
v Search and Update of Available Ranges (ARSU)
v Intersection of Available Ranges (ARI)

5. Evaluation

6. Conclusion and Future Work

Graduate School of Information, Production and Systems, Waseda University

ASIC-DA Lab 3

1 Introduction
v Reconfigurable Hardware Device

✢ The functionality of logic gates be customizable at run-time.

ü Higher performance, efficiency and flexibility than CPU and ASIC.
► Field Programmable Gate Logic (FPGA), etc.

v Dynamic Partial Reconfiguration

✢ Configure one part of device circuits without interrupting the execution of the rest parts.

ü Multiple tasks can be executed on a single device simultaneously.

v Main Function Unit
✢ Configurable logic block (CLB)

ASIC-DA Lab 4

1 Introduction

Bitstream
Bitstream

Bitstream

Application

Task queue

Partition

Scheduler

Placer

Microprocessor

FPGA

I/O block

CLB
Interconnect wires

Switch box

Fig.1 Overview of task execution process on the FPGA.

v System Overview

✢ Task mapping problem.

► How to decide where to place each task on the FPGA for execution?

► How to manage unoccupied programmable resources?

ASIC-DA Lab 5

2 Related Work

Actual hardware task Rectangular hardware task

Simplify

✕ Waste area

✕

✕

✕

✕✕

✕

FPGA
Internal unused area

Map

Fig.2 Waste areas due to the assumption of rectangular hardware tasks.

v Maximal Empty Rectangle [1-2]

✢ Propose a maximal empty rectangle (MER) list to manage programmable resources.

✢ MER is an empty rectangle that can not be fully covered by other empty rectangles.

✕ Hardware task is simplified as a rectangular shape.

► Internal unused area waste.

[1] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez, “Empty resource compaction algorithms for real-time hardware tasks placement on partially reconfigurable fpgas subject
to fault ocurrence,” in 2011 International Conference on Reconfigurable Computing and FPGAs. IEEE, 2011, pp. 27–34.
[2] T. Pan, L. Zeng, Y. Takashima, and T. Watanabe, “A fast mer enumeration algorithm for online task placement on reconfigurable fpgas,” IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 99, no. 12, pp. 2412–2424, 2016.

ASIC-DA Lab 6

2 Related Work

Fig.3 Non-rectangle task shape adjustment strategy.

v Best-Fit transformation (BFT) strategy [3]

✢ An IP core is regarded as the basic unit.
✢ The shape of a non-rectangular task is converted by changing the relative position between IP cores to

obtain better mapping results.

✕ Traverse all FPGA matrix to find feasible position - low efficiency.

✕ The shape transform requires an additional redundant time cost.

[1] C. Wang, W. Wu, S. Nie, and D. Qian, “Bft: a placement algorithm for non-rectangle task model in reconfigurable computing system,” IET Computers & Digital Techniques, vol. 10,
no. 3, pp. 128–137, 2016.

Original task shape

IP1

IP2

IP3

IP2

Horizontal shape transformation

Scope of moving

IP1

IP2

IP3

IP3

Vertical shape transformation

Scope of moving

ASIC-DA Lab 7

2 Problem Formulation

v Target Architecture: FPGA

✢ Two-dimensional (2D) architecture, where CLBs are distributed in rows and columns.

v Input： Application
✢ Represented as several multi-shape tasks.
✢ Each task is cut into several continuous blocks 𝒔(𝒌, 𝒋) = 𝒃 𝒌, 𝒋 , 𝒖 𝒌, 𝒋 .

3

2

1

0

-1

!

Continuous block list "Multi-shape task #

$(&,	&) = 	 [&, ,]	

$(.,	&) = 	 [−., .]	

CLB

0 1 2
0

$(.,	.) = 	 [1, ,]	

2 =	< $(&,	&), $(.,	&), $(.,	.) >

Baseline block

Fig.4 Multi-shape Task 𝑡 and Continuous Block List 𝑆.

ASIC-DA Lab 8

2 Problem Formulation
v Interval List

✢ The largest continuous rectangles in each column to manage the unoccupied resources.
𝑰(𝒌, 𝒋) = 𝒃 𝒌, 𝒋 , 𝒖 𝒌, 𝒋 .

Fig.5 5 × 5 FPGA and interval list.

0 1 2 3 4 5

5

4

3

2

1

0

!

"
0 1 2 3 4 5

5

4

3

2

1

0

!

"

FPGA Interval list

#(%,	%) = 	 [%, +]	

#(-,	.) = 	 [/, 0]	

CLBs occupied by currently running tasks.
CLBs that is available for a new arriving task.

Table I. Intervals in each column.

ASIC-DA Lab 9

3 Interval-based Mapping Algorithm

v Search and Update of Available Ranges (ARSU): 𝐴𝑅(*,+,,) = {𝑟., 𝑟/, … , 𝑟0}
✢ The set of available ranges (AR) for a continuous block 𝑠(&,') in the 𝑖-𝑡ℎ FPGA column, where 𝑟(=

[𝑦)*', 𝑦)+,] is the range in one interval.

Continuous block

Interval

✕

✓

("#, %#)

("', %')

((')
()#)

()')

✓ Available ✕ Unavailable

)' cannot accommodate ('. ✕
)# can accommodate ('. ✓ Available range: [%', %#]

()#)

()#)

((')

((')

Fig.6 Principle to search available ranges.

ASIC-DA Lab 10

v Search and Update of Available Ranges (ARSU)

✢ Search AR for the multi-shape task t from the 0-𝑡ℎ column of the interval list.

✢ Update AR for each continues block based on its relative position between the baseline block 𝑠(-,-).

[0, 1]

&((,()

[0, 0] [0, 1]
[3, 3]

+((,() in (,- column

.((,()
.(/,	()
.(/,	/)

AVAILABLE RANGE

&(/,() &(/,/)

UPDATING

[0, 1] [1, 1] [−2,−1]
[1, 1]

+/ −4

.(/,	()

.(/,	/)✕56((,(,() 56(/,/,() 56(/,/,/)
7(7/ 7(

7/

0 1 2 3 4 5

5

4

3

2

1

0

!

"
Interval list #$ in the 5×5 FPGA

'(),))
3

2

1

0

-1

!

Continuous block list of multi-shape task -

.(),))
.(/,	/)

.(/,))

'(/,	/)

'(/,))

Fig.7 Map multi-shape task 𝑡 in the 5×5 FPGA based on interval list 𝐼𝑁.

3 Interval-based Mapping Algorithm

ASIC-DA Lab 11

v Intersection of Available Ranges (ARI)

✢ Obtain the intersection value of all updated available ranges.

[0, 1]

&((,() &(*,()

&(*,*)

[1, 1]

[−2,−1]
[1, 1]

∩

∩[1, 1]

[1, 1]
0 1 2 3 4 5

5

4

3

2

1

0

.

/

Interval list

INTERSECTION

Final intersection value

Fig.8 Intersection value of updated available ranges.

3 Interval-based Mapping Algorithm

ASIC-DA Lab 12

v Simulation Setup

✢ FPGA size: 50 × 50 CLBs.

✢ Platform: MacOS 10.15.1, GCC 4.8 on 1.4 GHz Quad-Core Intel Core i5 Processor with 8 GB Memory.

✢ Task sets: TS1[1-5], TS2[5-10], TS3[5- 15] and TS4[1-15].

✢ Compared algorithms:
► Matrix-FF: Matrix-based mapping algorithm with First-Fit selection strategy

► Matrix-BF: Matrix-based mapping algorithm with Best-Fit selection strategy

► IMAL-FF: Interval-based mapping algorithm with First-Fit selection strategy

► IMAL-BF: Interval-based mapping algorithm with Best-Fit selection strategy

✢ Evaluation indicators: Mapping time, Acceptance ratio and Resource utilization ratio.

4 Evaluation

ASIC-DA Lab 13

v Mapping time (MT)

✢ Average CPU time elapsed for searching for available mapping positions for an arriving task.

4 Evaluation

[1-5] [5-10] [5-15] [1-15]
0

100

200

300

400

500

Ti
m

e
(m

s)

Task size

 Matrix-FF
 Matrix-BF
 IMAL-FF
 IMAL-BF

Fig.9 Mapping time evaluation.

ASIC-DA Lab 14

4 Evaluation

[1-5] [5-10] [5-15] [1-15]
0

20

40

60

80

100

Ac
ce

pt
an

ce
 ra

tio
 (%

)

Task size

 Matrix-FF
 Matrix-BF
 IMAL-FF
 IMAL-BF

v Acceptance ratio

✢ The ratio of the number of tasks successfully executed on the FPGA to the total tasks.

Fig.10 Acceptance ratio evaluation.

ASIC-DA Lab 15

4 Evaluation

[1-5] [5-10] [5-15] [1-15]
0

10

20

30

40

50

60

Re
so

ur
ce

 u
til

iz
at

io
n

ra
tio

 (%
)

Task size

 Matrix-FF
 Matrix-BF
 IMAL-FF
 IMAL-BF

v Resource utilization ratio (RUR): 𝑅𝑈𝑅 = ∑∀"#∈%&&'() '()*#×,#
-×.×/.

✢ 𝑆𝐼𝑍𝐸0 and 𝑒0 are the number of the CLBs and execution time of the task 𝑇0.

✢ 𝑊 and 𝐻 are the FPGA width and height.

✢ 𝐸𝑇 is the elapsed time from the first task arriving at the FPGA to the completion of the last task.

Fig.11 Resource utilization ratio evaluation.

ASIC-DA Lab 16

5 Conclusion and Future Work
v Conclusion

✢ Proposed an interval-based mapping Algorithm for multi-shape tasks on heterogeneous reconfigurable

FPGA.

✢ The proposed approach consists of two parts: mapping and placement strategy.

✢ The simulation results demonstrate that the interval-based mapping algorithm is better than the

traditional Matrix-based mapping algorithm in both FPGA utilization and running speed.

✢ Specially, the FPGA utilization ratio is improved by at least 10.3% compared with existing algorithms.

v Future Work
✢ Do a hardware implementation for the proposed interval-based mapping algorithm on an FPGA board

and evaluate it.

Graduate School of Information, Production and Systems, Waseda University

That’s all.
Thank you for your attention!

Contact: TINGYU ZHOU <shu-yu@asagi.waseda.jp>

