
Martin Langhammer, Gregg Baeckler, Sergey Gribok

SpiderWeb – FPGA Soft NoC

The SpiderWeb NoC is named because it
has a regular structure like a spiderweb

FPGA place and route is typically a
minimization exercise

The approach of SpiderWeb is instead to
force a regularization function

Results in predictable timing

Resource use

Resource type

Conventional wisdom (i.e. prior work)

You cannot build an effective high bus width, high speed soft NoC on FPGA
You can build a high bus width, low speed NoC

You can build a low bus width, high speed NoC

This is a Place and Route problem

You never know how your NoC is going to end up on the device

You can only guess how it will interact with the rest of your design

To fix this we need a different approach

We need a deterministic, repeatable NoC placement

The NoC has to have a deterministic resource usage profile

Method (leaving out many tricky details)

1. Using heuristics, fix the nodes of the NoC, for a reasonable target
performance.

2. Do a trial place and route.

3. Keep the paths within your performance profile, drop the ones outside the
profile.*

4. Repeat until all paths fit within performance profile.

5. Back-annotate to fix NoC

* it is just as important to drop paths that are too fast as the ones that are too
slow. this converges the resource use to similar types

300Gbps Stratix10
NoC
Can the chip fabric do it? Yes.

512 bit broadcast from bottom to all
~100 sectors of the device.

Register view on left. Routing on
right. Minimal congestion.

587 MHz on mid-speed grade
device

Fully Bidirectional
NoC Version
Routing is arranged to travel
opposite directions also

Minimal additional congestion
only @ diagonal turns on the
center spine (pink color)

Performance (Fmax) unchanged

Typically, return bandwidth is a
fraction of outbound bandwidth

real world area and routing impact
minimal

Physical vs. Iterative Placement

Some topologies (or subsets of the
NoC) can be automatically placed

See “Method” slide

Others benefit from physical placement

Corner turn from Spine to Leaf

Many different topologies can be built
with the described method

Constant Time != Constant Space

Distance is not the same as delay

Crossing I/O column long tpd

This is where the iterative method –
rejecting both too fast and too slow
paths – finds the optimal solutions

Scalabilty and Flexibility

SpiderWeb is not a fixed NoC – the 512b 300 Gbps design in the paper is just an
example

Once a SpiderWeb has been designed, the resource usage (both logic and
wires) is fixed. It will then always fit the exact same way onto a device, with the
exact same performance

The 512b NoC requires 10% device logic. If you want a smaller NoC (e.g. 128b)
then it will use less logic – 2%.

The iterative design approach means that you don’t need to know architectural
details to design a good NoC.

If you are too aggressive in speed or other specs it won’t converge – will be obvious
quickly

Conclusions

SpiderWeb is more than a soft NoC – consider it as a firm NoC
With near hard NoC performance

With soft NoC flexibility

A really big NoC (512b @ 300Gbps) takes 10% of the device. A smaller NoC will
take a lot less.

Iterative method within range (throw away both too slow and too fast paths)
means that resources usage known and interaction with the rest of the design is
understood before you begin the architecture phase.

