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Introduction

FPGAs for Control and Sensing

• Standard ideal assumptions in control theory  

– Input: Should be performed at the same sampling 
instant each iteration

– Computation: complete ASAP after sample is available

– Output:  physical layer signal drivers 

• Advantages of FPGAs 

– Application acceleration (most well-known)

– Massive parallelism can be exploited to create more 
ideal compute platform 

• Timing guaranteed by design (pico-second scale jitter)

• Design consolidation (integrate codecs, custom IO, etc)

• Low power 

– But: How to maintain flexibility of software?
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Engineering Workflow
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Introduction

Kalman Filter

• What is it?

– Model-based algorithm to estimate plant (e.g. physical process) state

– Includes noise model. 

– Gain updated dynamically (e.g. online)

– Very broad applicability

• Aerospace, robotics, image processing, virtual reality, stock market

– Often coupled with Linear Quadratic Regulator (LQR)
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x̂k+1=Ax̂k+Buk+K(z-Cx̂k)

X: state vector

A: state transition model

B: control model

K: gain

Z: measurement

C: measurement model

Linear State Estimator Extended Kalman Filter
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HW-SW PWAKFFPGA Kalman Filtering

• Early groundwork

– Early systolic array work; Fadeev Algorithm 
[Gaston 1990] 

– special-purpose; poor scalability [Lee 1997]

• Mixed hardware-software approaches

– Mobile robotics [Bigdeli et al, 2006]

– Kalman Filtering for SLAM [Bonato et al 2007]

– Additional systolic array folding [Sudarsanam
2010]

– UD Filter coprocessor [Gonzalez et al, 2015]

– EKF coprocessor with heterogeneous PEs 
[Pritsker 2015]  

– For the most part these works follow a similar 
design template
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[Bonato et al 2007]
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HW-SW PWAKFSystolic Array for Matrix Math

• Fadeev Algorithm: exploits properties of block matrices to perform matrix 
addition, subtraction, multiplication and inverse 

• Uses form of Gaussian Elimination to produce Shur Complement 
(E=D+CA-1B) of selected A matrix
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A B C D E

x I I 0 x-1

I x y 0 xy

I I x y x+y

I x y z x+yz

1  2 1 0

1  4 0 1

1  0 0 0

0  1 0 0 

A                B

C              D

Input Example
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HW-SW PWAKFTypical Refinement (n=3)

• Node reuse reduces nodes from factor of n2 to 2n

• However processing time becomes a function of n2

7

RAW 2016Aaron Mills   ::   Iowa State University

HW-SW PWAKFTypical Codesign Approach

• Limitations

– Communication: bottleneck for large n or high update frequency (more than 30% of 
total iteration time)

– Ignores system engineering issues--MCS, jitter: resource contention still invokes 
stochastic scheduling behavior

• Observation: A linearized modelling approach can eliminate the model-specific 
software portion � leads to fully hardware-oriented loop

– Maintains fast, yet flexible hardware

• How to maintain the same or similar operating domain?
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App
specific

App
agnostic
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HW-SW PWAKFPlant Modeling

• Piecewise Affine Modelling

– Reduces non-linear functions to a set of linear state-space models (one per 
region i)

– accurately model plant behavior over an expanded domain

• Kalman Filter reduces to pure matrix math
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xk+1 = Aixk+Biuk
yk = Cixk+Diuk

∀k = 1, 2, …∞ 

∀i= 1, 2, …, q
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HW-SW PWAKFFirst Design Steps 
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Old Structure New Structure

Observation:
• Coefficients only 

sent on transition
• No need to 

compute f, g

Piecewise-Affine Kalman Filter (PWAKF)
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HW-SW PWAKFSequencer Design
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Decomposition

State Machine
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HW-SW PWAKFIntegrating Systolic Array
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Transpose Unit (n=3)

• Additional latency hidden by skewed 
array input
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Memory Interconnects (n=3)

Systolic Array Input Pattern
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HW-SW PWAKFPerformance Analysis

• Number of clocks can be determined analytically from hardware:

– Dma is clocks needed for multiplication/add

– Dd is clocks needed for division

– Ks is the number of Kalman algorithm steps

– Can determine computation delay for pre-hardware simulation

• Analysis Obstacle: existing work is based on EKF and therefore highly 
application-specific.

• We propose a generalized approach to enable performance comparisons 
for piecewise Kalman Filter.
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HW-SW PWAKFDelay Model

Nonlinear Template function:
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1. How much  to send? (rnc )
• From 0 (plant model already linear) to 1 ( all coefficients need to be 

updated every region transition 

2. How often to send?  (rt )
• From 0  (no region transitions) to 1 (a region transition every time step)
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HW-SW PWAKFPerformance Analysis
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Observations

• ARM-A9 must be run at least 800Mhz to achieve equivalent performance

• For rt =0, Model Complexity is irrelevant

• Hardware running at 45Mhz vs 200Mhz ARM-A9 ref.
• Speedup vs Software-based EKF (-O2 flag; Gnu Scientific Lib)
• Performance assessed by manipulating n, rnc, rt
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HW-SW PWAKFComparison to EKF HW-SW

• Performance bounds assessed by manipulating rnc, rt

• PWAKF exhibits ave. 62% performance increase vs. EKF HW-SW

– Simplified software; reduced communication (mostly on transitions)
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HW-SW PWAKFHardware Resources

• Best power usage & performance when nodes make maximal use of 
hardware DSPs 

• Hardware planning:  ndsp�2n-1) ≤≤≤≤ ndspmax

• For Zynq (equiv. Artex 7): 220 DSPs � n = 28
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Case Studies

Case Studies Hardware Setup

• Digilent Atlys Board

– Better support for power 
estimation than Zedboard (Zynq)

• MicroBlaze RISC soft processor

– Configured for performance 
(2366 LUTs � ~9%)

– Single-chip solution
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• Power Analysis

– Intel Pentium M*: 20.8W to 35W TDP

– Intel Atom*: 1.3W to 8.5W TDP

– ARM9 (within Zynq): 0.6W-1.5W

– Spartan 6 (+Microblaze): 0.315W (<1% variation vs. n)

* Figures tend to underestimate actual system power requirements
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Future ResearchConclusion

• Looking Back
– Approach exhibits speedup vs prevalent hardware-software methods.

– Maintains application-agnostic design.

– Support for piecewise modeling allows tracking to maintain accuracy at multiple bias 
points.

– hardware-based processing dramatically simplifies timing analysis for verification.

– Low power appealing for battery operated applications.

• Limitation
– Still requires software stub

– Communication time impacts maximum update rate

• Future Work
– Region ID in hardware

– Impact of additional specialized matrix math units

– System integration
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