
On the Automation of High Level Synthesis of 
Convolutional Neural Networks

E. Del Sozzo, A. Solazzo, A. Miele, M. D. Santambrogio
emanuele.delsozzo@polimi.it

Politecnico di Milano

Chicago
RAW @ IPDPS

05/24/2016



Rationale
• Convolutional Neural Networks (CNNs) represent the 

state of the art in image recognition and classification

• CNNs are applied in different fields like Big Data 
analysis, video surveillance and robot vision

• However…
– due to the huge amount of data to be processed, it is 

crucial to find techniques to speed up the computation
– In particular, the dataflow pattern of CNN classification 

algorithm results to be suitable for hardware acceleration

2



Proposed Solution

• A framework to automatically generate a hardware 
implementation of CNNs on FPGAs, based on the HLS of 
configurable offline-trained networks

• Main features of the framework:
– generation of a synthesizable C++ code starting from the weights

of a CNN
– generation of scripts for Xilinx Vivado and Vivado HLS toolchains
– CNN design customization and support for Zedboard and Zybo

platforms

3



Motivation

• In order to generate the weights of a CNN, a 
software version of the CNN itself has to be built

• So, why should one use this framework?
– HLS tools deal only with a small set of programming

languages (C, C++, etc.), while machine learning
frameworks use many different languages

– Even though the CNN is implemented in C/C++, it may not
be synthesizable

4



Convolutional Neural Networks

• A CNN is a particular type of Artificial Neural Network 
inspired by cells in the primary visual cortex of animals [1]

• A CNN is composed of one or more convolutional and 
linear layers

• In this example, the CNN is of 2 convolutional layers and 1 
linear layer

5

[1]	Y.	LeCun et	al.,	“Gradient-based	learning	applied	to	document	recognition,”	Proceedings	of	the	IEEE,	1998	



Convolutional Layers

• extract features from images by applying different filters
(kernels)

• the more layers are used, the more complex features
are extracted

• may be alternated with sub-sampling layers to reduce 
stored data

6



Linear Layers

• Implemented as a fully connected Multi-Layer Perceptron
• group information collected by convolutional part 
• predict the class of the initial input image 

7



State of the Art
• Nowadays CNNs are employed in different fields:

– Human action recognition [2]
– Image classification [3]
– Natural language processing [4]

• The dataflow pattern of classification phase well suits
hardware acceleration on both GPUs [5] and FPGAs [6]

• To the best of our knowledge, there are no available
frameworks that ease the synthesis of CNNs on FPGAs

8

[2]	S.	Ji	et	al.	“3D	convolutional	neural	networks	for	human	action	recognition,”	Pattern	Analysis	and	Machine	Intelligence, IEEE	Transactions	on,	2013.
[3]	A.	Krizhevsky et	al.,	“Imagenet classification	with	deep	convolutional	neural	networks,”	in	Advances	in	Neural	Information	Processing	Systems	25,	2012.
[4]	R.	Collobert et	al.,	“A	unified	architecture	for	natural	language	processing:	Deep	neural	networks	with	multitask	learning,”	in	Proceedings	of	the	25th	
International	Conference	on	Machine	Learning,	2008.
[5]	D.	C.	Ciresan et	al.,	“Flexible,	high	performance	convolutional	neural	networks	for	image	classification,”	in	IJCAI	Proceedings-International	Joint	Conference	
on	Artificial	Intelligence,	2011.
[6]	C.	Zhang	et	al.,	“Optimizing	fpga-based	accelerator	design	for	deep	convolutional	neural	networks,”	in	Proceedings	of	the	2015	ACM/SIGDA	International	
Symposium	on	Field-Programmable	Gate	Arrays,	2015.



The Proposed Framework

• We propose a easy-to-use 
framework that allows to design 
and configure a CNN

• The front-end is designed as a 
web application

• The back-end is designed in 
Python

9

GUI

Trained Convolutional Neural Network specification

High Level Synthesis with Vivado Design Suite

Single layer
configuration

Main structure
design

Upload of 
weights file

Python wrappers

Source code
generation

Scripts *.tcl
generation

JSON file

Framework

C++ source code

Ne
tw

or
k 

ge
ne

ra
tio

n
Ha

rd
w

ar
e 

de
sig

n



Input

• The input are the weights of a 
trained CNN

• The weights may be generated
by means of machine learning
framework like Torch [7] and 
TensorFlow [8]

10

GUI

Trained Convolutional Neural Network specification

High Level Synthesis with Vivado Design Suite

Single layer
configuration

Main structure
design

Upload of 
weights file

Python wrappers

Source code
generation

Scripts *.tcl
generation

JSON file

Framework

C++ source code

Ne
tw

or
k 

ge
ne

ra
tio

n
Ha

rd
w

ar
e 

de
sig

n

[7]	“Torch	Framework.”	[Online].	Available:	http://torch.ch
[8]	“TensorFlow.”	[Online].	Avaliable:	https://www.tensorflow.org



Network Generation

Customization of:
– Convolutional part

• Number of layers
• Size and number of kernels
• Presence of sub-sampling
• Kernel size of sub-sampling

– Linear part
• Number of layers
• Number of neurons

11

GUI

Trained Convolutional Neural Network specification

High Level Synthesis with Vivado Design Suite

Single layer
configuration

Main structure
design

Upload of 
weights file

Python wrappers

Source code
generation

Scripts *.tcl
generation

JSON file

Framework

C++ source code

Ne
tw

or
k 

ge
ne

ra
tio

n
Ha

rd
w

ar
e 

de
sig

n



Hardware Design

• Choice of target platform
(Zybo or Zedboard)

• Hardware design composed of:
– ZYNQ7 Processing System 
– AXI DMA
– 2 AXI Interconnect
– Processor System Reset
– CNN IP Core

• The CNN IP Core uses AXI4-Stream 
Connection for data streaming

12

GUI

Trained Convolutional Neural Network specification

High Level Synthesis with Vivado Design Suite

Single layer
configuration

Main structure
design

Upload of 
weights file

Python wrappers

Source code
generation

Scripts *.tcl
generation

JSON file

Framework

C++ source code

Ne
tw

or
k 

ge
ne

ra
tio

n
Ha

rd
w

ar
e 

de
sig

n



Block Design 13



Output

• Generation of
– CNN C++ source code 
– tcl scripts for Xilinx Vivado and 

Vivado HLS toolchains
(2015.2 version)

• HLS and bitstream generation is
(at the moment) up to the user

14

GUI

Trained Convolutional Neural Network specification

High Level Synthesis with Vivado Design Suite

Single layer
configuration

Main structure
design

Upload of 
weights file

Python wrappers

Source code
generation

Scripts *.tcl
generation

JSON file

Framework

C++ source code

Ne
tw

or
k 

ge
ne

ra
tio

n
Ha

rd
w

ar
e 

de
sig

n



Experimental Results

• We synthesized different types of CNNs
for Zedboard platform

• FPGA performance were compared with 
ARM A9 processor in terms of:
– Prediction error
– Execution time
– Power/energy consumption

• We employed USPS and CIFAR-10 [9]
datasets

15

[9]	“CIFAR-10.”	[Online].	Available:	http://www.cs.toronto.edu/∼kriz/cifar.html



Test 1
Setup
• 16x16 grayscale USPS Dataset
• one convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons 

16

Prediction	Error Execution	Time
Speedup

Power Energy

Software Hardware Software Hardware CPU CPU+FPGA Software Hardware

3.9% 3.9% 3.3s 2.8s 1.18X 2.2W 4.19W 7.26J 11.73J

Pe
rc

en
ta

ge
 o

f F
PG

A 
R

es
ou

ce
 U

til
iz

at
io

n

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

BRAM DSP Slices Flip-Flops LUT Memory LUT



Test 2
Setup
• 16x16 grayscale USPS Dataset
• one convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE

17

Prediction	Error Execution	Time
Speedup

Power Energy

Software Hardware Software Hardware CPU CPU+FPGA Software Hardware

3.9% 3.9% 3.3s 0.53s 6.23X 2.2W 4.21W 7.26J 2.23J

Pe
rc

en
ta

ge
 o

f F
PG

A 
R

es
ou

ce
 U

til
iz

at
io

n

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

BRAM DSP Slices Flip-Flops LUT Memory LUT



Test 3
Setup
• 16x16 grayscale USPS Dataset
• 1° convolutional layer:

– six 5x5 kernels and sub-sampling
• 2° convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE

18

Prediction	Error Execution	Time
Speedup

Power Energy

Software Hardware Software Hardware CPU CPU+FPGA Software Hardware

7.1% 7.1% 4.3s 0.48s 9.0X 2.2W 4.24W 9.46J 2.04J

Pe
rc

en
ta

ge
 o

f F
PG

A 
R

es
ou

ce
 U

til
iz

at
io

n

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

BRAM DSP Slices Flip-Flops LUT Memory LUT



Test 4
Setup
• 32x32 RGB CIFAR-10 Dataset
• 1° convolutional layer:

– Twelve 5x5 kernels and sub-sampling
• 2° convolutional layer:

– Thirty-six 5x5 kernels and sub-sampling
• 1° linear layer:

– 36 neurons
• 2° linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE

19

Prediction	Error Execution	Time
Speedup

Power Energy

Software Hardware Software Hardware CPU CPU+FPGA Software Hardware

89.4% 89.4% 2565s 223s 11.5X 2.2W 4.37W 5643J 975J

FP
G

A 
R

es
ou

ce
 U

til
iz

at
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BRAM DSP Slices Flip-Flops LUT Memory LUT



Experimental Results Summary 20

CPU
CPU + FPGA

En
er

gy
 C

on
su

m
pt

io
n 

(lo
ga

rit
hm

ic
 s

ca
le

)

1

101

102

103

104

Test 1 Test 2 Test 3 Test 4

FP
G

A 
Sp

ee
du

p 
w.

r.t
. C

PU

0

2

4

6

8

10

12

Test 1 Test 2 Test 3 Test 4



Conclusions & Future Works
• We presented a preliminary framework for the 

automation of HLS of CNNs

• We plan to:
– Reduce FPGA resource consumption
– Expand the framework to support other platforms
– Add more CNN configuration options

• The new version of the framework will be online at:
http://cnn2fpga.hosting.necst.it

• Follow us on Facebook: 
CNNECST-Convolutional Neural Network 

21



Thank You for the Attention 22


