

Latency, Power, and Security Optimization in Distributed Reconfigurable Embedded Systems

Hyunsuk Nam and Roman Lysecky

Electrical and Computer Engineering University of Arizona, Tucson, AZ hnam@email.arizona.edu

Outline

- Introduction and Motivation
- Related Work
- Research Objectives
- Modeling and Optimization of Distributed Heterogeneous Embedded Systems
- Experimental Results
- Conclusions and Future Work

Introduction – Distributed Heterogeneous Embedded Systems

Distributed embedded system are composed of heterogeneous computing resources including processors, FPGA, and custom HW

Introduction – Distributed Heterogeneous Embedded Systems

Traditional approaches to security focus on cryptography only for inter-device communication

Introduction - Malware

McAfee Labs Threats Report: Nov. 2015

- Malware growing at an alarming rate
 - 100,000 new malware every day
- Malware can affect both SW and HW
 - FPGAs are reconfigurable and can potentially be reconfigured by malicious software

5

Introduction – Integrating Security within Design Process

- Goal: Security needs to be integrated within the design and optimization
 - Equally as important as other evaluation metrics (e.g., latency, energy)
- Need for method to quantify security within the design process
 - Enable ability to analyze the impact of different cryptographic implementations

Related Work - Integrating Security within Design Process (1)

- Hardware/software co-design for secure automotive systems [Jiang et al., DATE 2012]
 - Mapping and scheduling of tasks for ECUs
 - Cryptography used for inter-ECU communication
 - Goal is to optimize the number AES cryptography rounds

K. Jiang, P. Eles, and Z. Peng, "Co-Design Techniques for Distributed Real-Time Embedded Systems with Communication Security Constraints. *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pp. 947-952, March 2012.

Related Work - Integrating Security within Design Process (1)

- Task allocation and network scheduling [Selicean & Pop, ACM TECS 2015]
 - Design Methodology security-aware authentication supporting FlexRay, Time Triggered protocol
 - Determine task allocation, priority assignment, network scheduling, and key release
 - Goal is to minimize the summation of the worst-case latency
 - Seek to optimize the cryptography and authentication methods utilized within distributed automotive electronics
 - Does not consider intra-device cryptography, wireless communication/ or energy constraints

D. T. Selicean and D. P. Pop, "Design Optimization of Mixed-Criticality Real-Time Embedded Systems," ACM Transactions on Embedded Computing Systems (TECS), vol. 14, no. 50, May 2015.

Objectives

- Objectives and goals:
 - Design methodology for optimizing dataflow application using distributed, heterogeneous,

and reconfigurable embedded systems

- Consider embedded devices incorporating reconfigurable FPGAs, supporting mapping of tasks between SW and HW alternatives
- Support cryptography between all tasks implementations, including interand intra-device, SW and HW
- Develop integrated modeling framework for computation, communication, security, and power
- Optimize security, latency, power consumption given constraints on other metrics
- Define security levels for quantify to trade-off power and security

Security Levels

- Security Level
 - Defines a relative ranking of strength of the selected cryptography method
 - Can be used to rank different cryptographic alternatives and configurations thereof

Security Level	Key Size (bits)	Number Rounds
12	256	14
11	256	13
10	256	12
9	256	11
8	256	10
7	192	12
6	192	11
5	192	10
4	192	9
3	128	10
2	128	9
1	128	8
0	0	0

Parameterized Dataflow Application Model

- Use Parameterized synchronous dataflow (PSDF) model
 - Specify
 - System tasks
 - Parameterizable data sizes
 - Tokens transmitted between tasks
- Dataflow model for a video-based object detection and tracking application

Target ID/ Target Classified images

Execution Latency Model

- Specifies software and hardware task alternatives
 - Assumes all tasks can be implemented in HW or SW
- Software Latency
 - Latency of a task is based upon physical measurement from specific device
 - Linear scaling is applied to adjust for specific processor frequency
- Hardware Latency
 - Latency is measured in clock cycles based on RTL simulation
 - Frequency of hardware is limited by ED's system bus or synthesis results
 - Hardware size if constrained to size of reconfigurable region/tile

Communication Latency Model

CL_{SS}(w) CL_{SH}(w)

CL_{HS}(w) CL_{HH}(w)

CLD_{SS}(w) CLD_{HS}(w)

CLD_{SH}(w) CLD_{HH}(w)

- Communication latency model
 - Use physical measurements to determine latency for different modes for communication and size of tokens
 - Using IEEE 802.11g
 - Eight possible communication modes for transferring data between tasks, which depends on the task implementation

Inter-device communication

Power Model

- SW Power (P_{SW})
 - Characterizes the active and idle power consumption of each μP
- HW Power (P_{HW})
 - RTL implementation for each hardware task
 - Post-synthesis power estimation
- Communication Power (P_c)
 - Physical measurements of communication middleware on EDs
 - Latency based on data transferred, operating frequency, and communication mode
- Security Power consumption (P_s)
 - Utilized prototype SW and HW implementations for each SL
 - Created regression model based and key, rounds, and data size

ED2 FPGA: 1 µP1: 0

ED1

µP1: 2

DESIGN SPACE EXPLORATION METHODOLOGY

Experimental Setup

- Base latency constraint: 8 sec
 - Relaxed latency constraint: 12 sec

Example task mapping for a particular system configuration

THE UNIVERSITY OF ARIZONA College of Engineering

Experimental Results – Genetic Optimization Algorithm

For base constraint, all population size reach 0.1 % optimal after 50 generations For relaxed constraint, population size 75 and 100 reach

0.1 % Optimal after 100

Configured genetic optimization algorithm to use population size of 75 and generations of 100

Experimental Results - Power vs. Security Level

- Each doubling key size (with same rounds) increases power by average of 0.2% (e.g., SL of 3 to SL 8)
- Each increase in number of round (with same key size) increases power by average of 1.6% (e.g., SL of 8 to SL 12)

Experimental Results – Hardware/Security/Power Tradeoffs

Increasing number of hardware accelerator results in

lower power

THE UNIVERSITY OF ARIZONA College of Engineering

Experimental Results – Hardware/Security/Power Tradeoffs

Conclusions and Future Works

• Conclusions

- Application modeling and optimization framework for dataflow applications
- Different cryptographic configurations to achieve different security levels
- Evaluated the security, hardware, and power tradeoffs, demonstrating the power reductions that can be achieved using reconfigurable hardware and in some cases using a higher security level

Future works

- Utilizing multi-objective optimization metrics
- Integrating dynamic profiling and system observation methods to monitor system execution and detect deviations
- Explore the effectiveness of the proposed approach both for different applications and different heterogeneous system architectures

Thank you

Questions?

23