
A Reconfigurable Fixed-Point
Architecture for Adaptive

Beamforming

DANIEL LLAMOCCA AND DANIEL ALOI

Electrical and Computer Engineering
Department,

Oakland University

May 23rd, 2016

Outline
 Motivation

 Adaptive Beamformer
 Algorithm
 Architecture

 Experimental Setup

 Results

 Conclusions

Motivation
 Adaptive beamformers are common in switched-beam Smart

Antennas that contain fixed beam patterns that are
switched on-demand. They can also be used in null steering.

 The adaptive nature of the beamformers
makes them a suitable candidate
for reconfigurable implementation.

 Beamformers are widely used in radar,
sonar, speech, and mobile/wireless
communications

UNIFORM CIRCULAR ARRAY UNIFORM LINEAR ARRAY

Adaptive Beamformer
 Description:

 System that receives a vector of signals 𝑦𝑛 from multiple antenna
elements.

 The Beamformer output is described by: 𝑧 𝑛 = 𝑤𝑛
𝐻 × 𝑦𝑛.

 We want to emphasize a signal from a desired Direction of
Arrival (DOA) and suppress undesired signals. This is
accomplished by adaptively adjusting the weights 𝑤𝑛

𝐻.

 This requires large amounts of data to be processed in parallel.
In addition, we need resource efficiency. Here, dedicated
fixed-point hardware implementations are desired.

 We present a reconfigurable beamforming architecture
validated on a Programmable System-on-Chip.

 We analyze trade-offs among resources, accuracy, and
hardware parameters.

Adaptive Beamformer
 Frost’s Adaptive Algorithm

 𝑦𝑛: column vector of M complex input samples at time n. M:
number of sensors. N: number of snapshots (collection of M
samples at time n).

 𝑤𝑛: column vector of M complex weights at time n (𝑤1=𝑤𝐶).

𝑓𝑜𝑟 𝑛 = 1:𝑁
𝑧 𝑛 = 𝑤𝑛

𝐻 × 𝑦𝑛
𝑤𝑛+1 = 𝑤𝐶 + 𝑃 × 𝑤𝑛 − 𝜇𝑧∗[𝑛] 𝑦𝑛

𝑒𝑛𝑑
𝑃 = 𝐼 − 𝐶𝐻 𝐶𝐶𝐻 −1𝐶, 𝑤𝐶 = 𝐶𝐻 𝐶𝐶𝐻 −1𝑐

 Constrained optimization problem subject to 𝐶.𝑤𝑛 = 𝑐.
C: constraint matrix. c: column of constraining values.

 𝑤𝑛 accentuates signals coming from some direction and/or
suppress jammers. Thus, C and c steer the beamformer in a
desired direction (i.e., switch to a desired beam pattern).

 This is a relatively simple yet numerically robust algorithm.
We steer the beamformer by updating the
constraints C and c.

Adaptive Beamformer
 Parameterized fixed-point Architecture

 Complex data: Input Format: [B B-1]. Output format [BO BQ]
 𝑃,𝑤𝐶: They steer the beamformer in a particular direction

BO

w2[n]

w1[n]

Complex
Adder tree

y1[n]

y2[n]

yM[n]

Ey

B

B

B

...

*

*

*

z[n]+

Ez

BO

...

-m

+

+

+

f1[n]
+

+

+

wcM

...

...

PMxM

*

*

*

Ew
BO

BO

BO

BO

BO

BO

BO

BO

BO

BO

Em

BO

P

wc1 wc2

BO

wM[n]

f2[n]

fM[n]

NH NH NHNH

...

PMxMfMx1

f

-mz[n]

start

E

...

M

ADAPTIVE WEIGHT ADJUSTMENT

desired DOA ()

specified by and

Adaptive Beamformer
 Components:

 2M Complex Adders
 2M Complex Multipliers: Each one

requires 4 multipliers and two
adders.

 Complex Adder Tree: It requires 2 M-input pipelined adder trees.

B

B

+ -

BO BO

BO+B

BO+B+1

BO+B

BO+B BO+B

BO+B+1

R(0) R(1)

+++

++

+
BO

RT

B B B B B B B

R(2) R(3) R(4) R(5) R(6) I(0) I(1)

+++

++

+
BO

IT

B B B B B B B

I(2) I(3) I(4) I(5) I(6)

BO=B+log2(N)

Adaptive Beamformer
 Components:

 Complex Constant Matrix by Column Product:
𝑃𝑀×𝑀 × 𝑓𝑀×1, 𝑓 = 𝑤𝑛 − 𝜇𝑧∗ 𝑛 𝑦𝑛

M inner products: For a particular Direction of Arrival, P is
constant. We use Distributed Arithmetic to avoid multipliers

Latency:
𝑙𝑜𝑔2 𝐵𝑂
+ 𝑙𝑜𝑔2 𝑀 𝐿 + 3

cycles

Inner Product
(DA): Fully
pipelined
Distributed
Arithmetic
hardware than
can process new
data every cycle.

...

Complex
Inner Product (DA)

f2

fM

f1

P11 ...P12 P1M

v1

...

Complex
Inner Product (DA)

P21 ...P22 P2M

v2

...

Complex
Inner Product (DA)

PM1 ...PM2 PMM

vM

...

PMxM

COMPLEX MATRIX BY COLUMN
MULTIPLIER

...

BO

BO

BO

BO

BO

BO

BO M L

... Inner Product (DA)fR2

fRM

...

fR1

... Inner Product (DA)fI2

fIM

...

fI1

-

... Inner Product (DA)
... Inner Product (DA)

+

v

Pi1 ...Pi2 PiM

PRi1 PRi2 PRiM

PIi1 PIi2 PIiM

...PIi1 PI2 PIiM

...PRi1 PRi2 PRiM

COMPLEX INNER PRODUCT

f2

fM

f1

...

BO

BO

BO

BO

vRi

vIi

vi

...
...

BO M L

Adaptive Beamformer
 Operation:

 Dataflow controlled by an FSM.
 E captures input snapshots at time n: 𝑦𝑛. The complex weights

𝑤𝑛 are available at this moment.
 The output 𝑧[𝑛] is generated after 2 + log2 𝑀 cycles
 Once 𝑧[𝑛] is ready, the next set of coefficients 𝑤𝑛+1 is generated

after 𝑙𝑜𝑔2 𝐵𝑂 + 𝑙𝑜𝑔2 𝑀 𝐿 + 5 cycles

E

clk
... ...

Experimental Setup
 Generation of input beamforming signals:

 The snapshots 𝑦𝑛 are retrieved from an array of sensors.
 For this experiment, we use a Linear Array with M=6 sensors

where N=500 snapshots are generated.
 𝑦𝑚[𝑛] = 𝑠𝑚[𝑛] + 𝑖𝑚[𝑛] + 𝑟𝑚[𝑛]: Samples at each sensor

𝑠𝑚[𝑛]: Signal(s) of interest, 𝑖𝑚[𝑛]: Interference (jammer), 𝑟𝑚[𝑛]:
noise.

𝑠𝑚 𝑛 = 𝑠 𝑛 𝑒−𝑗𝑘. 𝑥𝑚 , 𝑖𝑚 𝑛 = 𝑖 𝑛 𝑒−𝑗𝑘. 𝑥𝑚, where 𝑘. 𝑥𝑚 depend
on the angle of arrival of each signal and the array geometry.

 Example: The following signals have different angle of arrivals
(AOIs) and amplitudes, and appear at different time intervals.
𝑠𝐴 𝑛 : AOI: 30, 𝑠𝐵 𝑛 : AOI: -10, 𝑠𝐶 𝑛 : AOIs: 0, 5,15, 20

0 100 500450170 240 310 380

0.5

1

Experimental Setup
 Matrix C and constant c: They control the beam pattern of

the antenna array. In our experiment, we consider two Scenarios,
each with different AOI (signals from previous figure).

𝑎𝐻 ∅ = [𝑒𝑗𝑘. 𝑥1 𝑒𝑗𝑘. 𝑥2 …𝑒𝑗𝑘. 𝑥𝑀], m = 0.01 (step size)

 Hardware Parameters:
 B=8, M=6, N=500, NH=16 (bits per coefficient).
 Five different fixed-point output formats are selected:

[BO BQ] = [32 30], [24 22], [20 18], [16 14], [12 10]

Number of integer bits? Depend on the experimental
values. We can saturate if overflow occurs.

Experimental Setup
 Hardware validation:

 The Frost Beamformer was included as
a custom peripheral in an embedded
system inside a Programmable SoC
(Zynq-7000) in a XC702 Dev. Board.

 Data is streamed and retrieved via an
AXI4-Full Interface.

PLPS

A
X

I
In

te
rc

o
n

n
e

c
t

A
R
M

memory
AXI Frost Beamformer

FROST

iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

C
e
n
tra

l
D

M
A

M

S

S

USB /
UART

 Accuracy Assessment (PSNR)
 Complex output samples 𝑧[𝑛], we compare the power 𝑧[𝑛] 2:

fixed-point hardware results vs software routine with double
floating point precision (MATLAB®). Two tests performed:

 Test 1: FPGA and software (MATLAB) uses the quantized input
samples (𝐵 = 8). This test assesses the quantization error
incurred by the fixed-point architecture

 Test 2: Only the FPGA uses the quantized input samples (𝐵 = 8)
This test assesses the effect of both input quantization and
fixed-point architecture on accuracy.

Experimental Setup
 Hardware validation:

 AXI Peripheral: It includes the Frost Beamformer and a 32-bit
AXI4-Full Slave Interface (FIFOs, and control logic).

 For M=6, B=8, a snapshot requires 482 bits (three 32-bit
words). As for the output, for BO=16, 12 no MUX is needed.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

iFIFO

FWFT mode

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK CLKFX=S_AXI_ACLK

oempty

orden

iempty

ifull

FROST

BEAMFORMER

start E v

yr

yi

yr

yi

48
32

M=6 B=8

32

32

32

48

32

32

0

1

FWFT mode

BO

AXI signals

...

BO = 32, 24, 20 MUX needed

BO = 16, 12 no MUX needed

yr1|yr2|yr3|yr4
yr5|yr6|yi1|yi2
yi3|yi4|yi5|yi6

AXI FROST BEAMFORMER

32

Results
 Resources

 The table shows resources (6-input LUTs, registers, and
DSP48s) for the given design parameters: M=6, B=8, NH=16.

 Resource consumption reasonable (<60% of the Zynq XC7020):
fully parallel architecture requiring many multipliers.

 Execution Time (performance bounds)
 The hardware IP can process N snapshots in:

log2 𝐵𝑂 + log2 𝑀 𝐿 + log2 𝑀 + 7 × 𝑁 cycles
 For M=L=6, N=500, and for a frequency of 100 MHz:
 𝐵𝑂 = 12, 16: Execution time: 70 us. Throughput: 7.14106

processed snapshots per second.
 𝐵𝑂 = 32, 24, 20: Execution time: 75 us.

Throughput: 6.66106 processed snapshots per second

Results
 Accuracy

 We show 𝑧[𝑛] 2 (power (dB) of the output signal) for N=500
snapshots. This is data retrieved from the fixed-point hardware
with [BO BQ] = [16 14]. Note how the Frost’s beamformer is
steered towards the desired directions.

 Scenario A (left): We steer the Beamformer towards 30
 Scenario B (right)): We steer the beamformer towards -10 .
 Note that the jammers are not present (there is no gain in the

interval where the SOI is present).

Results
 Accuracy (PSNR):

 Test 1: High accuracy values (> 70 dB) for formats larger than
[16 14], fixed-point architecture is robust.

 Test 2: Only the FPGA uses the quantized input samples.
Accuracy is decent (> 60 dB) for formats larger than [16 14].

 Increasing fractional bits from 14 to 30 only marginally
increases accuracy. However, accuracy drops for the format [12
10] (~50dB).

 For our experiment, we found the fixed-point output format [16
14] to be optimal: a larger format increases resource usage with
a negligible improvement in accuracy, and a smaller
format results in a large drop in accuracy.

Conclusions
 Successfully validated a fixed-point Beamforming hardware

that exhibits high throughput and reasonable resource
requirements.

 Accuracy results suggest that fixed-point results are close to
an implementation with double precision. Also, we
experimentally verified that the Frost algorithm mitigates
numerical errors: high PSNR values are obtained for small
fixed-point formats.

 A drawback of fixed-point architecture is the number of
integer bits: we can saturate, but the optimal number of
integer bits depend on the dataset.

 Currently working on a self-reconfigurable version for a large
set of hardware configurations and other array geometries.
The goal is to implement a smart antenna that adapts to
different beam patterns on-demand.

